CALCULS

VITESSE DE GLISSEMENT	$Vg = \frac{N.D2.\pi}{60000}$	Vg = vitesse de glissement (m/s) N = vitesse de rotation de la vis (Tr/min) D2 = diamètre sur flanc de la vis (mm)					
VITESSE DE L'ÉCROU	V = <u>N.P</u> 60	V = vitesse de l'écrou (m/s) N = vitesse de rotation de la vis (Tr/min) P = pas du système (mm)					
LONGUEUR DE L'ÉCROU	L1 = <u>F.P</u> Pz.D2.π.H1.n	L1 = longueur de l'écrou (mm) F = charge axiale totale (N) P = pas du système (mm) Pz = pression de contact (N/mm²), voir tableau H1 = hauteur de contact sur flanc (mm), =0,5P n = nombre de filets					
PRESSION DE CONTACT SUIVANT LA LONGUEUR DE L'ÉCROU	Pz = <u>F.P</u> L1.D2.π.H1.n	Pz = pression de contact (N/mm²), voir tableau F = charge axiale totale (N) P = pas du système (mm) L1 = hauteur de l'écrou (mm) D2 = diamètre sur flanc de la vis (mm) H1 = hauteur de contact sur flanc (mm), =0,5P n = nombre de filets					
ANGLE D'HÉLICE	Tan $\alpha = \frac{P}{D2.\pi}$	 α = angle d'hélice du filetage (°) P = pas (mm) D2 = diamètre sur flanc de la vis (mm) 					

La pression de contact admissible dépend de la vitesse de glissement et de la matière de l'écrou. Dans le tableau ci-contre, vous pouvez trouver les valeurs standards à utiliser pour nos écrous. Pour d'autres matières prenez 10 N/mm² comme valeur de base.

Matière	Vitesse de glissement (m/s)	Pz (N/mm²)			
Acier	1,5	10			
Bronze	1,5	10			
Polyamide	0,6	1			

ANGLE DE FRICTION	Tan ρ = μG		ρ = angle de friction (°) μG = voir tableau ci-dessous					
RÉVERSIBILITÉ	Matière des écrous Acier Bronze Polyamide	des écrous à set Acier 0,15 Bronze 0,10		G lubrifié 0,10 0,05 0,05	Le système n'est pas réversible si α< ρ Ces valeurs peuvent être modifiées par la lubrification, les états de surface en contact, etc			
RENDEMENT		α+ρ)	α΄ ρ η' α	= rendement d'un mouvement de rotation en translation = angle d'hélice (°) = angle de friction (°) = rendement d'un mouvement de rotation en translation = angle d'hélice (°)				
MOMENT D'ENTRAINEMENT	Ma = F. 2000		Ma = moment d'entraînement, en conversion d'une rotatio en translation (Nm) F = charge axiale totale (N) P = pas du système (mm) η = rendement d'un mouvement de rotation en translation					
	Me = F.P.ŋ' 2000.π		 Me = moment d'entraînement, en conversion d'une rotation en translation (Nm) F = charge axiale totale (N) P = pas du système (mm) η' = rendement d'un mouvement de rotation en translation 					

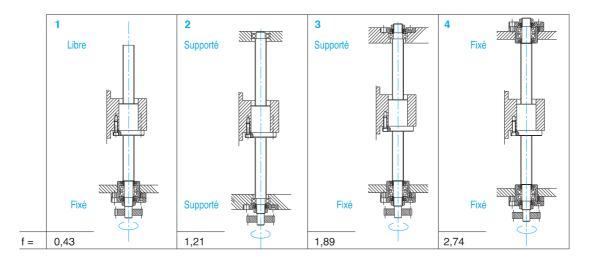
VITESSE CRITIQUE

En rotation, les vis sont soumises aux charges axiales et à des vibrations. Celles-ci sont en fonction de la longueur libre de la vis, du type de montage, du sens d'application de l'effort (traction ou compression). Dans ce dernier cas, il convient de faire une vérification de calcul au flambage.

$$Vct = \frac{D_3}{I^2} \quad 1, 1.10^8$$

Vct = vitesse critique (Tr/min)

D₃ = diamètre du noyau de la vis (mm)


L = longueur de la vis dû à la nature des supports (mm)

$$Vadm = Vct.0, 8.f$$

Vadm = vitesse admissible corrigée (Tr/min)

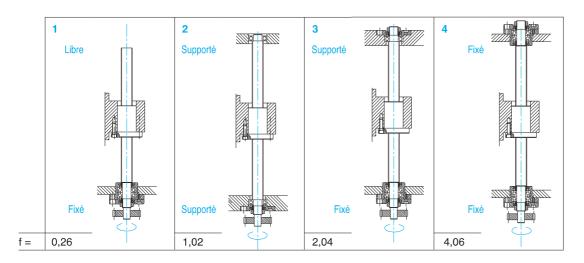
Vct = vitesse critique (Tr/min)

f = facteur de correction dû à la nature des supports

FLAMBAGE

Dans le cas d'une vis qui travaille en compression, plus le rapport longueur de vis/diamètre de vis augmente, plus la notion de flambage prend de son importance. Il convient donc de déterminer correctement le diamètre de la vis en fonction de la charge, ou vis versa.

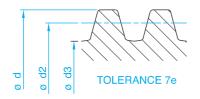
$$F_{cp} = \ \frac{21.10^4.D3^4.\pi^3.f}{64.Lcp^2}$$


L = longueur de la vis (mm)

Fcp = force axiale de compression maximale admissible sur l'écrou (N)

D₃ = diamètre à fond de filet de la vis (mm)

f = facteur de correction au flambage dû à la nature des supports


Lcp = longueur de vis soumis à la compression (mm)

Type TR

Trapézoïdal suivant ISO 2901/2903 et DIN103

Trapézoïda	al suiva	ant ISO	2901/29	903 et D	IN103			<u> </u>	الم الم				
	Gam	me de	préci:	sion - '	Vis aci	er - C3	5 (1.05	1) ou (C45 (1.0	503) - FIL	ETAG	E 7e	
Dáfáranas	Pas - Hand		Dimensions - mm							Rectitude	Angle	Poids	Longueur en stock
Référence Type	Droite		c	l l	d	12	d	3	Pitch accuracy	Straightness	Hélice	Weight	Length in stock
	Right	Left	maxi	mini	maxi	mini	maxi	mini	μ / 300 mm	mm / 300 mm	-	Kg/ M	mm
TR8x1,5	*		8	8,850	8,183	8,013	7,2	6,783	150	0,4	3°50'	0,311	
TR10X2	*	*	10	9,820	8,929	8,739	7,5	6,962	150	0,4	4°07'	0,482	
TR10x3	*		10	9,764	8,415	8,191	6,5	5,770	200	0,5	6°33'	0,424	
TR12x3	*	*	12	11,764	10,415	10,191	8,5	7,770	150	0,4	5°17'	0,653	
TR14x3	*	*	14	13,764	12,415	12,191	10,5	9,770	100	0,4	4°26'	0,932	
TR14X4	*		16	15,700	13,905	13,640	11,5	10,569	50	0,5	6°11'	0,879	
TR16x4	*	*	16	15,700	13,905	13,640	11,5	10,569	50	0,5	5°16'	1,173	3 000
TR18x4	*	*	18	17,700	15,905	15,640	13,5	12,569	50	0,5	4°36'	1,528	
TR20x4	*	*	20	19,700	17,905	17,640	15,5	14,569	50	0,5	4°05'	1,940	
TR22x5	*	*	22	21,665	19,394	19,114	16,5	15,400	50	0,2	4°43'	2,294	
TR24x5	*	*	24	23,665	21,394	21,094	18,5	17,375	50	0,2	4°17'	2,781	
TR26x5	*		26	25,665	23,394	23,094	20,5	19,375	50	0,2	3°55'	3,329	
TR28x5	*	*	28	27,665	25,394	25,094	22,5	21,375	50	0,2	3°36'	3,905	
TR30x6	*	*	30	29,625	26,882	26,547	23,0	21,681	70	0,2	4°05'	4,358	
TR32x6	*		32	31,625	28,882	28,544	25,0	23,681	70	0,2	3°48'	5,038	
TR36x6	*	*	36	35,625	32,882	32,547	29,0	27,681	70	0,2	3°20'	6,546	
TR40x7	*	*	40	39,575	36,375	36,020	32,0	30,506	80	0,2	3°31'	7,983	
TR44x7	*	*	44	43,575	40,375	40,020	36,0	34,506	80	0,2	3°10'	9,856	6 000
TR50x8	*	*	50	49,550	45,868	45,468	41,0	39,300	100	0,2	3°11'	12,696	0 000
TR55x9	*	*	55	54,500	50,660	49,935	45,0	43,119	100	0,2	3°16'	15,400	
TR60x9	*	*	60	59,470	55,360	54,935	50,0	48,119	100	0,2	2°58'	18,498	
TR70x10	*	*	70	69,470	64,850	64,425	59,0	56,969	100	0,4	2°49'	25,627	
TR80X10	*	*	80	79,470	74,850	74,425	69,0	66,969	100	0,4	2°27'	34,189	
						DOUE	BLE FILET	S					
TR10X4	*		10	9,820	8,929	8,716	7,5	6,962	200	0,4	8°12'	0,482	
TR12X6	*		12	11,764	10,415	10,164	8,5	7,770	150	0,4	10°30'	0,653]
TR14x6	*		14	13,764	12,415	12,164	10,5	9,770	100	0,4	8°49'	0,932	
TR16X8	*		16	15,700	13,905	13,608	11,5	10,569	100	0,5	10°29'	1,173	
TR18X8	*		18	17,700	15,905	15,608	13,5	12,569	100	0,5	9°20'	1,528	3 000
TR20X8	*		20	19,700	17,905	17,608	15,5	14,569	100	0,5	8°09'	1,940	
TR22X10	*		22	21,665	19,394	19,058	16,5	15,400	200	0,5	9°23'	2,294	
TR24x10	*		24	23,665	21,394	21,058	18,5	17,375	200	0,3	8°31'	2,781	
TR28x10	*		28	27,665	25,394	25,058	22,5	21,375	200	0,3	7°12'	3,905	
TR30x12	*		30	29,625	26,882	26,507	23,0	21,681	200	0,3	8°08'	4,358	
TR32x12	*		32	31,625	28,882	28,507	25,0	23,681	200	0,3	7°34'	6,546	
TR36x12	*		36	35,625	32,882	32,507	29,0	27,681	200	0,3	6°39'	6,546	6000
TR40x14	*		40	39,575	36,375	35,977	32,0	30,506	200	0,3	7°01'	7,983	
TR44x14	*		44	43,575	40,375	39,977	36,0	34,506	200	0,3	6°20'	9,856	

Type TRI

Trapézoïdal suivant ISO 2901/2903 et DIN103

Vis inox - 316L (1.4404)													
Référence Type	Pas - Hand		Dimensions - mm							Rectitude	Angle	Poids	Longueur en stock
	Droite Right	Gauche <i>Left</i>	(d d2		d3		Pitch accuracy	Straightness	Hélice	Weight	Length in stock	
	Nigrit	Len	maxi	mini	maxi	mini	maxi	mini	μ / 300 mm	300 mm mm / 300 mm		g/ M	mm
TRI10X2	*	*	10	9,820	8,929	8,739	7,5	6,962	200	0,8	4°07'	0,482	
TRI12x3	*	*	12	11,764	10,415	10,191	8,5	7,770	200	0,8	5°17'	0,653	
TRI14x3	*	*	14	13,764	12,415	12,191	10,5	9,770	200	0,8	4°26'	0,932	
TRI16x4	*	*	16	15,700	13,905	13,640	11,5	10,569	100	0,8	5°16'	1,173	
TRI18x4	*	*	18	17,700	15,905	15,640	13,5	12,569	100	0,8	4°36'	1,528	2.000
TRI20x4	*	*	20	19,700	17,905	17,640	15,5	14,569	100	0,8	4°05'	1,940	3 000
TRI22x5	*	*	22	21,665	19,394	19,114	16,5	15,400	100	0,8	4°43'	2,294	
TRI24x5	*	*	24	23,665	21,394	21,094	18,5	17,375	100	0,8	4°17'	2,781	
TRI26x5	*		26	25,665	23,394	23,094	20,5	19,375	100	0,8	3°55'	3,329	
TRI28x5	*	*	28	27,665	25,394	25,094	22,5	21,375	100	0,8	3°36'	3,905	
TRI30x6	*	*	30	29,625	26,882	26,547	23,0	21,681	100	0,8	4°05'	4,358	
TRI32x6	*		32	31,625	28,882	28,544	25,0	23,681	100	0,8	3°48'	5,038	
TRI36x6	*	*	36	35,625	32,882	32,547	29,0	27,681	100	0,8	3°20'	6,546	6 000
TRI40x7	*	*	40	39,575	36,375	36,020	32,0	30,506	100	0,8	3°31'	7,983	
TRI50x8	*	*	50	49,550	45,868	45,468	41,0	39,300	100	0,8	3°11'	12,696	